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Abstract— This paper presents a critical review of analytic solutions for bending and buckling of
flat. rectangular, orthotropic thin plates. Considered are plates with all edges simply supported. two
edges simply supported and two edges clamped. and all edges clamped. An orthotropy rescaling
technique is employed to simplify the analysis. The material orthotropy is characterized by two
non-dimensional parameters, 7. = Dy Dy and n = (D> +2D). D, D>;. When n = |, many solu-
tions for orthotropic plates can be obtained directly from the corresponding isotropic results.
Systematic comparisons with finite element solutions are made for the critical buckling load of a
plate under in-plane compression. and for deflection and stresses in a plate under out-of-plane
uniform pressure. It is found that for plates with all edges clamped. the analytic solution for critical
buckling load is neither accurate nor conservative: a better solution needs to be developed for
design purposes. The validity of the thin plate theory solutions over a range of plate thicknesses is
also examined. ¢ 1997 Elsevier Science Ltd.

1. INTRODUCTION

With progress in composite materials technology. composite plates made of solid laminates,
sandwich laminates, and laminates reinforced with stiffeners are widely used in aerospace
and marine structures. The analysis of bending and buckling of composite plates is critical
to the safe-design of these structures. Unlike plates made of conventional materials such as
steel, composite plates such as those made of fiber reinforced plastics are inherently aniso-
tropic and inhomogeneous, their bending and buckling deformations are more complicated.
Analytic solutions to the bending and buckling problems of composite plates are desirable
since they provide convenient tools for the design of composite structures. However, these
solutions are based on certain assumptions and often approximate in nature; a close
examination of their accuracy is thus needed.

The bending and buckling of rectangular plates has been a subject of study in solid
mechanics for more than a century. Many exact solutions for isotropic linear elastic thin
plates have been developed: most of them can be found in Timoshenko’s monographs
(Timoshenko and Woinowsky-Krieger. 1959, Timoshenko and Gere, 1961). Exact and
approximate solutions for anisotropic plates and laminaied plates have also been derived
and subsequently compiled by Lekhnitskii (1968) and by Whitney (1987). However, even
for a thin. homogeneous orthotropic piate, the analytic solutions given in the open literature
are incomplete. Further, owing to material orthotropy. the form of the solution to the
bending problem depends on the plaie rigidities ; its determination involves solving a fourth
order algebraic equation. To simplify the analysis, a better handling of material orthotropy
is called for.

To benefit the designers of composite plate structures, in this article, analytic solutions
for bending and buckling of homogeneous orthotropic thin plates are reviewed. The plate
1s taken to be flat. rectangular. with edges aligned along material principal directions. An
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ropy rescaling technique is introduced so that only one nondimensional rpaterlal

eter appears in the governing equation ; the eigenvalues involved in the buckling and

1g problems are solved in a closed-form. Existing analytic solutions, with mistakes

~.ted, are compiled using two nondimensional material parameters ; analytic solutions
~annot be found in the open literature are derived.

he accuracy of the analytic solutions compiled and developed in this study varies:

howe for simply supported plates are exact, others approximate. Further, owing to the

ieplate theory assumptions, all the analytic solutions are approximate when the plate

hickness becomes large. To cross-check the accuracy of the analytic approximate solutions,

aid 1o identify the range of plate thicknesses over which the analytic solutions are valid,

~iv~tomatic finite element calculations were performed for plates with different aspect ratios

and thicknesses to obtain the critical buckling loads under in-plane uniaxial compression,

and deflections and stresses under out-of-plane uniform pressure. All the finite element

results were obtained using the commercial finite element code ABAQUS. Specifically, 800

~hell elements of type S4R, which is valid for both thin and thick plates, were used for each

culoulation s the mesh sensitivity and convergence check has been reported in Jiang et al.

11990).

2. ORTHOTROPY RESCALING

Assume that the thin plate with length a, width 4 and thickness 4 is homogeneous,
orthotropic, with material principal direction | and 2, as depicted in Fig. 1. Under plane
stress conditions relative to the 1 and 2 axes, the stress-strain behavior of the material can
be given by

ey = b0y +b1200;
€3 = h200 +b2200;

€12 = bee0) (H

b/T¢ L )
A
| YV 4n

—— & ——
(a)

b
o
FEFFTTY

(b)
Fig. 1. Schematic of a flat, orthotropic, rectangular plate (a) under out-of-plane umform pressure
and (b) under in-plane uniaxial compression. Shown also are the dimensions of the plate and the
Cartesian coordinates.
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where b,s are components of the compliance matrix. In terms of engineering constants, we
have

O SRS Y St S

H*Els zz—E:« 12 = E, hb—Gll
where £, and £, are Young's moduli in 1- and 2-directions. respectively. v,. is Poisson’s
ratio and G, is the shear modulus. The general treatment of 3-dimensional material
anisotropy can be found in Lekhnitskii (1981). A standard. x, v, - coordinate system is
introduced such that the x- and p-axes coincide with the 1- and 2-axes. respectively. as
shown in Fig. 1.

Based on the usual assumptions in the theory of the bending of thin plates. the

governing equation for displacement w of the plate in the --direction 1s

~4 ~4 ~4

W W W
Dy, T +2(D > +2Dg) — s+ Das T Fx.y) (3)
X CX™ Oy cy
where D,;'s are the flexural rigidities of the plate given by
D _ E.h"‘ D N E:/I} B
v _12(1*"12\'21)~ 12?12(1*"1:":1)‘
v, E P G,
D.=—" — -, o = = 4
S oIl IO N 12 )

with v, = v,Ey/E,. For inhomogencous materials such as laminates, the D;’s can be
obtained from the properties of the plies following a standard procedure (Jones, 1975). The
function F(x, 1) on the right hand side of (3) depends on the problem under consideration.
For example, for a plate under uniform out-of-plane pressure ¢ as illustrated in Fig. la, we
have

Flx.v)=g. (5)

For a plate under in-plane compression N, in the v-direction as shown in Fig. 1b. F(x.1)
is given by

(
Fix.y) = =N — (6)
xo
Under free-vibration of the plate.
S
Fx.v)=—p—, (7)
or
where p is the density of the plate integrated over its thickness.
Equation (3) can be rewritten as
Chw . AT Cw F(xL )
R = (8)
(x X~ v Dy,

where
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2
=D Diat 2D ©a)

are non-dimensional parameters characterizing material orthotropy. For a homogeneous,
orthotropic plate, (9a) can be rewritten as

jofr o 20Uy N (9b)
VEE:
[t can be shown readily from the positive-definiteness of the strain energy that
O<ri< . —l<p<ao. (%¢)
However, for mest engineering materials such as fiber reinforced plastics, 0 < n < 5 (Lekh-

nitskii, 1981).
Introducing an orthotropy rescaling of the 1-coordinate

b= (10)
eqn (&) becomes
gy O SRt an
oy a2 (T‘l//: (‘5¢/4 Dy,

The forms of eqns (8) and (11) indicate that although the deflection of a thin orthotropic
plate depends on four elastic constants £, E,, v, and G,,, only two non-dimensional
parameters £ and # are involved in the analysis. Note that, for bending, buckling and free
vibration problems defined by (5), (6), (7) and (11). only x appears in the governing
equation. In particular, if an orthotropic plate has 4 ~ 1. the form of eqn (11) becomes
identical to that for an isotropic plate. Therefore. all existing solutions for an isotropic plate
can be converted readily to solutions for an orthotropic plate with g x~ 1.

The orthotropy rescaling in eqns (9)-(11) has important implications. If a plate has
width b, then, after rescaling in the y-direction, the width of the plate becomes b = 4~'“b,
and the adjusted aspect ratio R of the plate in the new x— system is related to the original
plate aspect ratio r = a/b by

R=ab=7"%ub=7""%. (12)

Equation (12) implies that the effect of E,/E, is mainly to change the aspect ratio of the
plate. Consequently. for any orthotropic plate with stress—strain behavior (1), it is sufficient
to solve (11) together with the adjusted plate aspect ratio R. The analysis is thus simplified.
Orthotropy rescaling similar to that defined in (9) and (10) has been applied to fracture
mechanics problems by Suo er al. (1991) and Bao er af. (1992), to buckling of orthotropic
plate by Brunelle and Oyibo (1983) and to free-vibration of orthotropic plates by Yu and
Cleghorn (1993). Parameters similar to ~ and  have also been used by March and Smith
(1945) in a buckling analysis. by Huber (1929) for bending of a plate with # = 1, and by
Smith (1990) in his studies of bending and stretching of orthotropic plates.
In the sections that follow, we will consider solutions to the governing equation

Chy e Cwe Flx, 2y
DAl e S (13)
ox CxT Oy Or Dy,

with F(x.2'*v) specified in (5) and (6) for bending and buckling of the plate. For
convenience. in the following, 1 is used instead of y. Free-vibration of an orthotropic plate
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can be analyzed in a similar fashion but will not be considered here. The boundary
conditions associated with (13) are:

(i) Plates with all edges simply supported
Wiz, = 0, “",\:0_/{ =0

o

=0,

a,.
x=0.¢ {,.\

= 0. (14a)

A2

cXNT
(ii) Plates with two edges (x = 0, @) clamped and others simply supported

“‘l\:(J‘u = O' 1“lr:ll.h‘ = 0

) -’} (14b)
Y v= 0 CV7 |y=0p
(1i1) Plates with all edges clamped
l”\:()_u = 0- “"\ =05 — 0
L - (14c)
CX o CVlicon

Once the deflection w(x, y) is solved from (13) together with boundary conditions (14),
the moment resultants M, and M. can be obtained using

&w Dy, étw

1M\:—D11:*,’* T A (15a)
‘X NVER
&w e

M =—-D,—— -, (15b)
ot A0

where the effect of orthotropy rescaling in the y-direction is included. The normal stresses
at the surfaces of the plate are related to M, and M, by

6M, 6M,
g, = .0, =

h* h

(16)

3. BUCKLING UNDER UNIAXIAL COMPRESSION

Consider a rectangular orthotropic plate under in-plane compression N, applied on
the edges ¥ =0, a. as shown in Fig. 1b. The critical buckling stress ¢, depends on the
geometry and material of the plate. and the buckling mode. In a nondimensional form, .,
can be expressed as

g0, = G(R.n.m) a7

where g, 1s a reference buckling stress

Un:ix;~ (18)

R = ;'*a/b is the adjusted plate aspect ratio. and m is the number of half-waves in the
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Fig. 2. Normalized critical buckling stress o, ¢, as a function of (a) the adjusted plate aspect ratio
R =(Dy D,))""a b and (b) the nondimensional plate thickness i # for plates with all edges simply
supported. The analytic solution is shown as the solid line and the finite element solution as points.

loading direction (v-direction). Note that the dependence of a,,/6, on / is given entirely
through R.

3.1, Plates with all edges simply supporred
For a plate with all edges simply supported, the exact solution for critical buckling
stress o, 1S given by (e.g.. Whitney. 1987)

=4, (19)

Lt is readily determined from (19) that a plate will buckle in m half-waves if

\fr/n(i';'zr»—ﬁl'i) SR ﬁz(ﬁH— D, m=>=1: (20)

Fig. 2a is the comparison between analytic and finite element solutions for a,,/a, for plates
with /i/b = 0.021 with different adjusted aspect ratios R. The agreement is seen to be
excellent. Since the analytic solution (19) is exact for thin plates. the high accuracy of the
finite element model is established.
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As a direct consequence of the thin plate theory assumptions, the normalized critical
buckling stress a,,/6, given in (19) does not depend on plate thickness h. However, in
general, as the plate thickness increases, the error owing to the assumptions in thin plate
theory can be large. To uncover the range of plate thicknesses within which (19) is valid,
in Fig. 2b, g,,/0, is plotted against the normalized plate thickness #/b for R = 2. The solid
line is the prediction made based on (19) ; the points are computed using the finite element
S4R which is valid for both thin and thick plates. It is clear from Fig. 2b that for plates
with all edges simply supported, the solution given in (19) is quite accurate for /b < 1/12.

3.2. Plates with two loaded edges clamped|others simply supported
For plates with two loaded edges clamped and two other edges simply supported. the
exact solution for critical buckling stress o, 1s derived (Appendix A)

GL" \
= 2k ) (21a)
Og

where & can be solved from the equation
(1+kycos[(z) —z-)nR]+ (1 —=k)cos[(~, + 2 )nR] =2 {21b)

with

N T N S T R S e R ! (2lc)

Note that there is no n dependence in eqns (21b) and (21¢) : the solution for & therefore is
the same as that for an isotropic plate with aspect ratio R. Following Timoshenko and
Gere (1961), the plate will buckle in m half-waves if

COEDm=1) < R< | mmt2. m> 1, 22)

Using an energy method (Timoshenko and Gere. 1961). an approximate solution for
., has been developed (March and Smith. 1945) which gives

one half-wave; 27 == + = +2n. (23a)

R- fhom+1
m half-waves: G _ - + {”—;Ltj +25. m> 1. (23b)
go  m+1 (m +1R-

Based on eqn (23). a plate with two loaded edges clamped and two other edges simply
supported will buckle in one half-wave if

R<(8411)'*: (24a)
it will buckle in two half-waves if
84/11)'* < R<(54)' - (24b)
it will buckle in m half-waves (m > 2) if
(n* =2 30 =2m+6)' P < R < +2m +3m +2m+6)' 4, (24¢)

The transition aspect ratios given by (24) differ slightly from the exact solution (22). For
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Fig. 3. Normalized critical buckling stress ¢, @, as a function of (a) the adjusted plate aspect ratio

R =(D-, D)) “a:b and (b) the nondimensional plate thickness A/b for plates with two loaded edges

clamped and other edges simply supported. The analytic solution is shown as the solid line and the

finite element solution as points. Shown also in (a} as the dashed line is an approximate solution
based on an energy method.

example, according to (22), the plate buckles in one half-wave up to R = 1.732, while eqn
(24a) gives R = 1.662.

Shown in Fig. 3a is the normalized critical buckling stress o/, as a function of the
adjusted plate aspect ratio R for A/b = 0.021. The solid line is the exact solution obtained
from (21), the dashed line is the approximate solution (23), and the points are finite element
solutions. The finite element solution is almost identical to the exact analytic solution (21);
the approximate analytic solution given in (23) is also quite accurate. It is worth noticing
from (21) and (23) that for any value of  other than n = 0.414 used in the calculation, the
two curves shown in Fig. 3a will just move up or down without changing its shape. It is
again true that the analytical solution for critical buckling stress a,, given by (21) or (23) is
accurate only for thin plates, as demonstrated in Fig. 3b. For example, when # = /12, the
analytic solution (shown as the solid line) for o, /0, is about 10% higher than the cor-
responding finite element solution (shown as points}.

3.3. Plates with all edges clamped
There exists no exact solution for o,, for plates with all edges clamped. An estimate
for ¢,, can be obtained using the following formulae (March and Smith, 1945)
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Fig. 4. Normalized critical buckling stress ¢,,/0, as a function of (a) the adjusted plate aspect ratio
R =(Dx/Dy))! “a.band (b) the nondimensional plate thickness /b for plates with all edges clamped.
The analytic solution is shown as the solid line and the finite element solution as points.

or

. 4 8
one half-wave : =4R-+ Eﬁ + gn. (25a)

0

. 16R? ‘remi+1 8
O _ — m + ™ —?+~n, m>1. (25b)
T 3(m +1) (m~+1R- 3

m half-waves:

It i1s readily seen from eqn (25) that a plate with all edges clamped will buckle in one half-
wave if

R <(63:44)' *. (26a)
it will buckle in two half-waves if
(63/44)' * < R <(B1/8)'* (26b)
it will buckle in m1 half-waves (m > 2) if
L[3(m* —2m* +3m> —2m+6)]' * < R < S[3mt 42m 4 3m7 +2m+6)]' 4. (26¢)

To examine the accuracy of the approximate solution (25), the normalized critical
buckling stress a.,,/0, is plotted in Fig. 4a as a function of the adjusted plate aspect ratio R
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for i;h = 0.021 and in Fig. 4b as a function of the plate thickness ratio /#j» for R = 2. The
finite element results are also shown for comparison. Although not exact in the strict
mathematical sense. the finite element solutions for ¢, 1s believed to be very accurate, as
demonstrated by Figs 2a and 3a. Evidently. for plates with all edges clamped, the analytic
solution given by (25) is not very accurate. Further, the range of the plate thickness ratios
within which thin plate theory works well is found to be much narrower. This is due to the
high deformation constraint introduced by the clamped edges. Clearly, a better analytic
solution for ¢, for plates with all edges clamped needs to be developed. The problem is
very challenging due to the mathematical difficulties involved.

In summary, for a plate with all edges simply supported, the exact solution for the
critical buckling load is very accurate for plate thickness # up to about b/12. For a plate
with two loaded edges clamped and other edges simply supported, the exact solution is
quite accurate for 4 up to about b/16. However, for a plate with all edges clamped, the
approximate closed-form solution for ¢, is found to be inaccurate and non-conservative,
even when the plate thickness is not large.

The effects of material orthotropy on the critical buckling load are as follows. Increase
the flexural rigidity \/D, D5, will result in a higher g.,. The effect of 2 = D5,/ D, 1s just to
modify the plate aspect ratio in terms of R = /' *u/b; decreasing 4 will reduce the number
of half-waves and in general increase o,. The effect of # is to move the a., vs R curve up or
down : the higher the value of 5 the larger the ¢ ,.

4. BENDING UNDER UNIFORM PRESSURE

When an orthotropic plate is subjected 1o out-of-plane uniform pressure g as depicted
in Fig. la, the maximum deflection A occurs in the middle of the plate. In a nondimensional
form. A can be expressed as

AA, =y(R. ) (27a)
where A, is a reference deflection
gb?
g = 27b
A D- (270)

R = 7'"a/b is the adjusted plate aspect ratio. Note that A, A, only depends on R and #. the
dependence on £ is entirely through R.

The maximum stresses in an orthotropic plate may or may not occur at the center of
the plate. depending on the boundary conditions and material orthotropy. For convenience,
in most of the following discussions, only the stresses o, and o, at the center of the plate
are considered. In nondimensional forms. the stresses o, and o, at the center of the plate
can be expressed as

/3
% 7} =% (R 7.V ). (28a)
qb-
a.hr .
—— =y AR 2n.v5). (28b)
gb-

The parameters £ and v,» come into play as indicated by eqn (15). The stresses may also
depend on v, but v, = 4v,,.
4.1. Plateswith all edges simply supported

4.1.1. Maximum deflection. The exact solution for the maximum deflection A of the
plate under uniform pressure ¢ is given by (Whitney. 1987)
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Fig. 5. Normalized maximum deflection A;A, as a function of (a) the adjusted plate aspect ratio

R =(Dx/D)) “a-b and (b) the nondimensional plate thickness /b for plates with all edges simply

supported. The analytic solution is shown as the solid line and the finite element solution as points.
Shown also in (a) as the dashed line is the corresponding isotropic solution.

A 16R4 P4 ¥ (71)(m'n‘2]2
Sl A A 29
AU 71'6 m:;l .on :IZ.J, . Dmn ( )
where
D,., = m*+2n(mnR)* + (nR)*. (30)

Plotted in Fig. 5a is the normalized deflection AjA, against the adjusted aspect ratio R of
the plate with &/b = 0.021. The solid line is the analytic solution given by (29) with
n = 0.414; the points are finite element results. The isotropic solution (4 = 1, = 1) is also
shown as the dashed line for comparison. The finite element solution is seen to be very
accurate. It is interesting to note that even if 2 =1, ie., E, = E,, the effect of material
orthotropy (1 = 0.414) can be large. When the adjusted plate aspect ratio R is large, say,
R = 4, 1t can be shown (Lekhnitskii, 1968) that the normalized deflection A/A, approaches
5/384.

The governing eqn (3) is based on the thin plate theory assumptions; the solution
given in (29), therefore, may be inaccurate for plates with large thicknesses. To show the
range of plate thicknesses within which (29) is valid. in Fig. 5b, A/A, is plotted &s a function
of h/b for R = 2. The analytic solution for AjA, using eqn (29) is shown as the solid line;
it 1s independent of A. The finite element solutions are shown as points; they are more
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accurate. Evidently. even for a plate with 4 = b/12. the relative error (~4%) in the analytic

solution for A is insignificant.

4.1.2. Maximum stresses. When a plate is simply supported at all edges, the maximum
stresses o, and o, occur at the center of the plate. For plates with —1 <# < I, it can be
shown that under uniform out-of-plane pressure ¢. o, and o, are given by

5

40-7\7/1; _ 3“|: + 24 7 (* 1)17)1—]»_
212 4 1o Z 3
qb T hbysam=103. M @,
= . . mus R . mns-R a mn/s R mni,R
X | (\/ A—Vv2i1) sinh 5 SN =2V 2 A cosh 5 cos —— (31a)

24 . (*])(m—l):

3
. + - .
gb* 4w o,

mni R . mnsisR mn/ R mmniR

x[(v,:\,/ln)sinh 5 sin 5 —2/,4,cosh- —jv—vcos 5 ] (31b)

where
¢,, = coshmmns, R+cosmns, R, (32)
T =
. f T / "
= Y e T (33)
Vo2 Vo2

It is worth mentioning that the corresponding solutions for the maximum stresses ¢, and
o, given in Lekhnitskii (1968) are erroneous. For cases in which # > 1, the maximum
stresses are

(,\,,,; 3w, *34 5 (— 1)“1' VA A ) A Ay ) (342)
gb” 4 T A(A — 23 ) m=Tr. m’ mnz, R mmn/2R
cosh - cosh -7+
2 2
. - R
o h” 3 24 4 — D2 = v aai A Al =iy A
= —— - (,_, B l . . ,,:,(,, 12 " V ) _ 1 ‘-7‘-‘,.\ ) (34b)
gh> 4 (=i m-Th m’ mnsy R PRULZTS
- | cosh cosh—
where
sy o= V/U—f—\' ;]3 —1. 4= \//;14\, ,72 1. 1l<py<x. (35)

Note that ~ = 1, 5 = 1 corresponds to the 1sotropic case; the corresponding solutions for
o, and g, can be found in Timoshenko and Woinowsky-Krieger (1961). Note also that. no
matter what value of # has, as the adjusted plate aspect ratio R becomes large (R > 4, say),
we have a, — 3v,gb /dh*, 6, — 3gb*/dh,

Shown in Fig. 6a is the normalized maximum stress ¢, as a function of the plate aspect
ratio a/b for 2 = 1,5 = 0.414, h/b = 0.021. The analytic solution (314) is shown as the solid
line, the isotropic solution (£ = 1,5 = 1) as the dashed line, and the finite element results
are shown as points. The finite element solution agrees well with the analytic solution given
by (31a). Here again, even if E, = E,. i.e.. 2~ = 1. the isotropic solution can give rise to
significant errors when the plate aspect ratio is close to unity. Similar plots are displayed in
Fig. 6b for o, as a function of the plate aspect ratio; the features are the same as that
exhibited in Fig. 6a.
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Fig. 6. Normalized maximum stresses g, in (a) and ¢, in (b). respectively, as a function of the plate

aspect ratio asb for 2 = 1. = 0.414, h:h = 0.021 for plates with all edges simply supported. The

analytic orthotropic solution is shown as the solid line. the isotropic solution (~ = 1.5 = 1) as the
dashed line, and the finite element results are shown as points.

In general, the solutions for maximum stresses given in eqns (31) and (34) are accurate
only for thin plates. However, it is found that for #/h < 1/12. the normalized maximum
stress 6,h°/qb” and o h'/qb’ are essentially independent of plate thickness 4, as can be seen
from Figs 7a and 7b.

4.2, Plates with two edges clampediothers simply supported
Considered in this subsection is a plate clamped along edges parallel to the )-axis
and simply supported along the other two edges. Solutions for w(x,v) can be found in

Lekhnitskii (1968). Discussed below are the maximum deflection and the stresses at the
center of the plate.

4.2.1. Maximum deflection. The maximum deflection of a plate with —1 < < 1 has
the form

A 5 § & —ym-ner mn. R mmi-R . . mni, R mni-R
1 2 I 2
— - 4, cosh $in ——-—- + /4. sinh cos
T nry, 2 2 2 2

“

(36)

where
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supported. The analytic solution is shown as the solid line. the finite element results are shown as
points.

W, = 2> sinhmns, R+ 7, sinmni, R (37)

with 4, and /, given in (33). For a plate with | < 5 < x. A/A;is given by

A5 4L (= _hmn/l,R . _hmn/ﬁzR (38)
A(l - 384 7[S m=1.3. mSC,,, & - e S 2
where
. omnA, R mnsi-R . mnsyR . mns-R
Sy = Aysinh 2 S cosh 2 cosh ”;’ sinh "2 (39)

and 2, and /£, are defined in (35). It is evident from eqns (36) and (38) that independent of
n. Aj/A, tends to 5/384 when R becomes large (say. R > 3).

For comparison. the maximum deflection A/A, is plotted in Fig. 8a against the adjusted
plate aspect ratio R for 4 = 1,4 = 0.414, h/b = 0.021. The finite element solution shown as
points agrees well with the analytic solution shown as the solid line. The isotropic solution
(~ = 1.,n = 1), however. can have large errors even for a plate with £, = F,. The normalized
maximum deflection A/A, is found to be quite insensitive to the increase in plate thickness
for h/b < 1:12. At liub = 1/12. the relative error is just 5%, as can be seen from Fig. 8b.
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Fig. 8. Normalized maximum deflection A/A, as a function of (a) the adjusted plate aspect ratio

R = (DD} *a/b and (b) the nondimensional plate thickness //b for plates with two edges clamped

and others simply supported. The analytic solution is shown as the solid line and the finite element
solution as points. Shown also in (a) as the dashed line is the corresponding isotropic solution.

4.2.2. Stresses at the center of the plate. For a plate with two edges clamped and two
other edges simply supported, if the material is isotropic, the maximum stresses (tensile or
compressive) occur at the middle of the clamped edges. If the plate is orthotropic, however,
the location at which the maximum stress occurs depends on plate aspect ratio and material
orthotropy. In the following, only stresses at the center of the plate are considered ; they
may or may not be the maximum stresses.

When —1 < < 1. the stresses at the center of the plate can be calculated from
(Lekhnitskii, 1968)

48 . (_ ]){H: 1?2
qbl 4 7'[3/2 me= 1.3, n’}l//m

ch® 3y,

~ . mnAi, R . mn/,R ~ . mni R m/, R .
X | (vay —«/ ~)4; cosh 5 sin— > +(vs) ++/ 4) /2 sinh 5 cos 5~ (40a)
0'}1’12 B 3 48 - (_ ])uw 1y 2
gh* 4 2T iy,
~ . mn/ R mniR - . . . mni R mmn/, R
x [(1 —Vi24/ £}4, cOsh 21 sin ;_' + (1 +v,34/4)4: sinh 2' cos > ] (40b)

where s, 1s given in (37) and ~, and /, are defined in (33).
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simply supported. The analytic orthotropic solution is shown as the solid line, the isotropic solution
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For cases in which n > 1. the expressions for stresses at the center of the plate are
given by (Lekhnitskii. 1968)

ch” 3v,s . 24 L (=D D ( ST h”'?ﬂ;-zR

= - Vi) — A1 A)4As sinh -
qb- 4 T amsTa L, N 2

- . . .omni R
—(Vay =23y AV sth (41a)

ah’ 3 24 2 (=Dwbe a s hnm/ﬂ:R
=+ — — e — V247~ 2)2-sinh— =
(]b; 4 T om=1.3. )”3:", v 2

. o mmAR
(1= 22y Az sinh ”’”;} (41b)

where (,, 1s the same as that in (39) and +, and /. are given in (35). Here again, no matter
what # is. when the adjusted plate aspect ratio R is such that R > 4, the stresses tend to
o, = 3v,gh 4. 6, = 3qb*/4h°.

A comparison is made in Fig. 9a for the normalized stress a /47 /¢b* obtained using eqn
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Fig. 10. Normalized maximum stresses g, in (a) and g, in (b). respectively. as a function of the

nondimensional plate thickness /-5 for 2 = 1.5 = 0.414. ¢ b = 2 for plates with two edges clamped

and others simply supported. The analytic solution is shown as the solid line. the finite element
results are shown as points.

(40a) (shown as the sohid line) and using finite elements (shown as points). The cor-
responding solution based on the isotropic assumption is also displayed. The finite element
solution 1s found to be almost identical to the analytic solution given in (40a) ; the isotropic
approximation can lead to large errors even if E, = E. (i.e., ~ = 1). The same features are
true for the normalized stress o,/4°/gh” as can be seen from Fig. 9b. For A/ < 1/12.itis found
that the normalized maximum stresses a /7/gh” and ¢ /i":gh™ are essentially independent of
h. as demonstrated by Figs 10a and 10b.

4.3. Plates with all edges clamped

For a plate with all edges clamped. there exists no exact solution for the deflection
w(x, ). Approximate solutions have been developed based on various methods (Lekh-
nitskii, 1968 . Whitney. 1987). Given below are solutions obtained using the Ritz method.

4.3.1. Maximum deflection. For aplate with —1 <n <, 3.5.an approximate solution
for the maximum deflection is derived (Appendix B)
1 S AR R R AR
A | 27, CoshTsm = +2/5 smh—2 cos >
— =5 1= PRI
A, 384 /i sinz, R+, sinh A R

(42)

where
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Fig. I1. Normalized maximum deflection A/A, as a function of (a) the adjusted plate aspect ratio
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The analytic solution is shown as the solid line and the finite element solution as points. Shown also
in (a) as the dashed line is the corresponding isotropic solution.

. / e e 5 / I~ e
= \/6(\/'3.5‘*‘}?), fn = \/ 6(\/’35‘7]) (43)

For a plate with > \,/?.“5. we have (Lekhnitskii, 1968)

. .h).lR i _h;,__,g
A_ | 1 £ SIn 5 /.5 8In 7 )
A, 384 . h/”.lR h).lR o h}.zR hz.R
/1 Sin TCOS 3 — /> SIn TCOS T
where
iy =230+ =35). h =231 —3.5). (45)

Regardless of the value of 5, as the adjusted plate aspect ratio R becomes large, say, R > 3,
A/A, tends to 1/384.

To check the accuracy of the approximate solution (42), in Fig. |la, the maximum
deflections A/A, obtained using eqn (42) and the finite elements are plotted against the
adjusted plate aspect ratio R for 2 = 1,7 = 0.414, h/b = 0.021. The finite element solution
shown as points is believed to be very accurate as demonstrated by Figs (3a) and (8a) ; the
results shown in Fig. 11a are obtained by merely changing the boundary conditions in the
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model. Compared with the finite element results, the analytic solution is seen to be quite
accurate for a wide range of plate aspect ratios. It is also evident that the effect of material
orthotropy on the maximum deflection A is relatively weak, since the isotropic solution
shown as the dashed line is quite close to the orthotropic solution. When the plate thickness
increases, the error in A given by (42) increases owing to the thin plate theory assumptions,
as demonstrated by Fig. 11b. At h/b = 1/16, the relative error is about 10%.

4.3.2. Swresses at the center of the plate. The stresses at the center of a plate with
—1 <5 < /3.5 can be calculated from the approximate solution for w(x, y) (Appendix B)

O'\h:*\']: 771"7 3 /? 4 . h/‘.lR‘ /ZR
ob =7 R (3/352+4v; )81 5 cos

- R . iaR
—(3/3.5,—4v,,), cosh?LE sin’f} (46a)

2 2
o’ 1 1 Y S
E =1 %o [(3\ 124/ 354 +4) 4, sthgosf2
— R .- R
~(3v2y 35442 cosh " sin J (46b)
where

w=/,sini,R+/,sinh/, R (47)

and 4, and #, are given in (43). For plates with > \33 the stresses at center of the plate
are given by

s s g R i /R
ol v (16vs) — 23/ )4 sth —(16vy, — 47/ /)% sinh N
= = —_ Y T T T T T Ty T A (48'51)
gb* 4 . AR R AR R
644+, sthcosh T bth cosh =N
o . . AR . .. . /R
i1 (16 —v273/ 2)/ sth' —(16—v 227 )42 sth
L (48b)

>4 R "R />R R
9b 64 (/’.1 sinh%cosh /\2 — /5 sinh f? cosh /'2>

where 4, and /. are defined in (45). When the adjusted plate aspect ratio R is large, say,
R > 3, wehave g, x v,qb™/dh°. 0, ~ gb” /4",

Displayed in Fig. 12a is the normalized stress ¢ i~/ ¢b” as a function of the plate aspect
ratio a/b for h/b = 0.021, / = 1, n = 0.414. The analytic solution (46a) is shown as the solid
line. the finite element solution the points, the solution based on the isotropic assumption
is also shown as the dashed line for comparison. The isotropic solution, generated using
the FORTRAN code developed by Steele (1994). is that given by Danielson et al. (1994)
based on a Fourier expansion scheme. Although still approximate. the solution given by
(46a) is seen to be quite accurate, especially when . > 1. The isotropic solution, however,
can give rise to large errors when a;b x 1.0. A similar comparison is made in Fig. 12b for
o /rjgh” as a function of @/b. The analytic solution given by (46b) agrees well with the
finite element results. Evidently, the isotropic solutions for ¢, and ¢, provide a good
approximation only for a/b > 2.5. Shown in Figs 13a, b are the effects of plate thickness 2
on the normalized stresses o /" qb” and &, #*/¢b°, respectively. Clearly. for # < h/12, g, h%jgb’
1s essentially independent of /4.
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Fig. 12. Normalized maximum stresses ¢, in (a) and ¢, in (b). respectively, as a function of the plate

aspect ratio a;h for 2 = 1, n = 0.414, h/b = 0.021 for plates with all edges clamped. The analytic

orthotropic solution is shown as the solid line. the isotropic solution (£ = l.n = 1) as the dashed
line, and the finite element results are shown as points.

To further demonstrate the accuracy of the approximate solution developed in Appen-
dix B for bending of an all-edges-clamped orthotropic plate with —1 < < \/3.5, dis-
tributions of the stresses o, and ¢, along the x-direction at the surface of the plate in the
symmetry plane y = b/2 are calculated for an isotropic plate (i.e., 2 = 1,5 = 1) witha/b = 2,
Poisson’s ratio v = 0.115 using eqns (B17) and (B18). These distributions are also obtained
using the FORTRAN code developed by Steele (1994) based on a Fourier expansion
scheme (Danielson et a/., 1994). Shown in Fig. 14a is the comparison of the approximate
and the Fourier series solutions for g, as a function of position x in the plate at y = 5/2
(the symmetry plane). It is seen that the two solutions are in good agreement; they are
essentially identical for —0.3a¢ < x < 0.3¢ where a is the length of the plate. A similar
comparison for o 1s given in Fig. 14b, and the overall agreement between the two solutions
is also quite good.

5. CONCLUDING REMARKS

Composite plates made of solid laminates, sandwich laminates, and laminates
reinforced with stiffeners are widely used in acrospace and marine structures. To guide the
design of these composite structures, in this article, existing analytical solutions for bending
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The analytic solution is shown as the solid line, the finite element results are shown as points.

and buckling of unstiffened rectangular orthotropic thin plates are compiled and new
solutions developed based on two non-dimensional orthotropic parameters 4 and #. Sys-
tematic comparisons are made between analytic and finite element solutions for the critical
buckling load under in-plane uniaxial compression, and defiection and stresses under out-
of-plane uniform pressure. The accuracy of the analytic and finite element solutions is
checked ; the dependence of these solutions on plate aspect ratio and thickness is examined.

The solutions for critical buckling load, deflection and stresses of a composite plate
depend on material orthotropy. To simplify the analysis, in this study, the material ortho-
tropy of the plate is characterized by two non-dimensional parameters, ~ and . By using
an orthotropy rescaling technique, only # appears in the governing equation. In addition,
if y = 1, solutions for an orthotropic plate can be obtained directly from the corresponding
isotropic results. When y # 1, the dependence on 5 can be quantified using analytical
solutions or by performing a finite element analysis. For buckling of a plate under uniaxial
compression, it is found that the effect of 2 = D../D,, is just to modify the plate aspect ratio
in terms of R = 2'*a/b; decreasing /. will reduce the number of half-waves and in general
increase ¢,,. The effect of  is to move the g, vs R curve up or down: a larger g results in a
higher q,,.

Some of the analytic solutions discussed in this article are exact solutions for thin
plates ; others are approximate solutions with different degrees of accuracy. Specifically,
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for plates with all edges simply supported. and for plates with two edges simply supported
and others clamped, the analytic solutions compiled for critical buckling load, the maximum
deflection and the stresses at the center of the plate are exact. although many of them are
series solutions. For plates with all edges clamped, the analytic solutions are approximate.
The accuracy of the analytic solutions for the maximum deflection and stresses is found to
be quite good. However, the analytic solution for the critical buckling load is neither
accurate nor conservative. A better solution for buckling of thin plates with all edges
clamped needs to be developed.

There are three purposes of carrying out finite element analyses in this study for bending
and buckling of orthotropic thin plates. First, with available exact analytic solutions for
simply supported thin plates, the accuracy of the finite element model is established. The
same finite element model is then used to obtain solution for plates with all edges clamped
by changing the boundary conditions. Second, the accuracy of the approximate analytic
solutions are checked by comparing them with the more precise finite element results. Third,
for plates with relatively large thicknesses. the finite element results are more accurate, since
the finite element S4R used in the calculations is valid for both thin and thick plates. It is
well recognized that the finite element solutions are not exact in the strict mathematical
sense. However, the results obtained using finite elements are believed to be very accurate
and thus can be used to check the accuracy of the approximate analytic solutions.
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All the analytic solutions presented in this paper are based on the thin plate theory
assumptions ; they are valid only for certain range of plate thicknesses. For critical buckling
stress g, and the maximum deflection A of a plate, such a range depends on boundary
conditions of the plate. For a plate with all edges simply supported, the analytic solutions
for 6., and A are accurate even when the plate thickness is relatively large (say. h = 5/12).
If a plate has two simply supported and two clamped edges, the thickness dependence is
stronger. i.e., the analytic solutions for 4, and A are good for a smaller range of plate
thicknesses. For a plate with all edges clamped, the analytic solutions for ¢, and A defer
from finite element results even for a relatively thin plate. It is also revealed that for all the
boundary conditions considered (all edges simply supported, all edges clamped, and simply
supported;clamped), the stresses in the middle of the plate are essentially independent of
the plate thickness if 4 < b/12. For thick plates. analytic solutions have been developed
using a shear deformation plate theory (Reddy. 1984 . Whitney. 1987); the discussion of
such solutions, however, is out of the scope of the present study.

Acknowledgements -This work was supported in part by the Naval Surface Wartare Center (NSWC), Carderock
under contract No. N00039-94-C-001 in support of the Organic Composites Ship Structures Project, and in part
by NSF through a Research Initiation Award MSS 9210250 to G. Bao. Special thanks go to Professor C. R.
Steele for allowing us to use the FORTRAN code he developed for clamped plates. Helpful discussions with C.
R. Steele and D. A. Danielson are gratefully acknowledged.

REFERENCES

Bao. G.. Ho. S.. Suo, Z. and Fan, B. (1992). The role of material orthotropy in fracture specimens for composites.
International Journal of Solids and Structures 29, 1105- 1116.

Brunelle, E. J. and Oyibo. G. A. (1983). Generic buckling curves for specially orthotropic rectangular plates.
AlAA Journal 21, 1150 1156.

Danielson. D. A., Steele. C. R.. Fakhroo, F. and Cricelli, A. S. (1994). Stresses in ship plating. Technical Report
NPS-MA-94-008, Naval Postgraduate School, Monterey, CA.

Huber, M. T. (1929). Probleme der Statik Technisch Wichtiger Orthotroper Platten. Warszawa.

Jiang. W.. Bao. G. and Roberts, J. (1996). Finite element modeling of stiffened and unstiffened orthotropic plates.
Computers and Structures, in press.

Jones, R. M. (1975). Mechanics of Composite Materials, McGraw-Hill, New York.

Lekhnitskii. S. G. (1968). Anisotropic Plates. Gordon and Breach. Science Publishers. New York.

Lekhnitskii. S. G. (1981). Theory of Elasticity of an Anisotropic Bodv. Mir Publishers. Moscow.

March, H. W. and Smith. C. B. (1945). Buckling loads of flat sandwich panels in compression. Forest Products
Laboratory Report No. 1525, Madison, Wisconsin.

Reddy. J. N. (1984). A refined nonlinear theory of plates with transverse shear deformation. /nternational Journal
of Solids and Structures 20, 881--896.

Smith. C. S. (1990). Design of Marine Structures in Composite Materials. Elsevier Applied Science. London.

Steele. C. R. (1994). FORTRAN Program PLATESG for computation of a clamped rectangular plate with pressure
load and axial resultant force. Stanford University.

Suo.Z..Bao. G.. Fan, B.and Wang, T. C. (1991). Orthotropy rescaling and implications for fracture in composites.
International Jowrnal of Solids and Structures 28, 235- 248.

Timoshenko. S. P. and Woinowsky-Krieger, S. (1959). Theory of Plates und Shells. McGraw-Hill, New York.

Timoshenko. S. P and Gere. J. M. (1961). Theory of Elastic Stability. McGraw-Hill. New York.

Whitney. I. M. (1987). Structural Analvsis of Laminated Anisotropic Plates. Technomic Publishing. Lancaster.

Yu. S. D. and Cleghorn. W. L. (1993). Generic free vibration of orthotropic rectangular plates with clamped and
simply supported edges. Journal of Sound and Vibration 163, 439-450.

APPENDIX A

Consider a rectangular, orthotropic plate with length « and width A subjected to uniaxial compression
NN, > 0) in the x-direction. as shown in Fig. 1b. The loaded edges are clamped and other edges simply
supported. After orthotropy rescaling. the governing equation for the deflection w is given by

e e Cwo N e
—= 42 ) (A1)
ax? et ot Daey
Assuming that
. A
wx. ) = fly)ysin—. (A2)
h

where 5 = + ' *h./ and y are the non-dimenstonal parameters detined in {9a) ; the boundary conditions al the two
simply supported edges (1 = 0.5h) are satisfied. Substituting (A2) into (Al). one obtains the equation for f{x)
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dair N 17y d° !
R 3
dx? 2Dy, b/dx b

The solution for /() has the form

Sy =em” (Ad)
where the characteristic equation for s is
S22k 41 =0 (A5)
with & detined by
AN
k=—" -1 (A6)
2r° Dy,
When buckling occurs.
N, =N, =a,h (A7)
we thus have from (A6)
a
==k~ (A8)
O—U

where a, is a reference buckling stress defined in (18). Assuming that & > 1, the solutions of (A5) for s are given
by

s= ti/. 5= tii- (A9)
N SN s NNy SN S ) (A10)
f(x) 1s thus given by
flx) = Asin 2, Zi.\‘+ Bcosz, rf,\'+ Csinz, E\ +Dcos 7 f\ (All)
h h b h

Applying the boundary conditions

W, =00 & =0 (A12)
X

to {A2) and (A1) and requiring a non-trivial solution for f{x) leads to the equation for &
(I+k)cos[(+, —A)nR]+(} —k)cos[{+, +/-)nR] = 2 (A13)

where R = /'“a b is the adjusted plate aspect ratio.

APPENDIX B

For a plate with all edges clamped. there exists no exact solution for the deflection w of the plate under
uniform out-of-plane pressure. An approximate solution obtained based on the Ritz method is given in Lekhnitskii
(1968). That solution. however. is only applicable for plates with y > / 3.5. For most engineering composites
such as fiber reinforced plastics, n < |, 3.5. It is thus necessary to develop an analytic solution for the regime
—l<y< \?—g

The governing equation for the deflection w of a plate of length « and width A under uniform out-of-plane
pressure ¢ is given by

q a "
M Tt Cwg :

+2n— o= —al<x<d20<r<h (B1)
it AR O i

where the 1-axis has been rescaled : the plate now has width # = /' *A. The boundary conditions are

. R
Cw | Ow
- =0, =

xl,o,- cy

=0. (B2)

wlho cao =00 ] =t

vk

Assuming that




Solutions for bending and buckling of plates

4q

A 25 B d(N),
24D”(’1 by PP

w(x,1y) =
then the boundary conditions at y = 0. 5 are satisfied. Define

Wiy = v =287 4 hy7

and require that

et , O Cwy b dy =0
Jn oxt o :“1+ o Do) nens
we have the differential equation for ¢(x)

b‘4 d4 h"_ d:
L
504 44 21 4,2

Let

A
P(x) = 1+exp (,\'f )
. b/

the characteristic equation tor s is given by

1 0oL
LS A )
7R TR

For -1 <n < 3.5, the solutions for s are
s =+ +irs)
where
= NSO IS Y A= 6L 38

Symmetry conditions in the v-direction implies that ¢(x) can be expressed as

A /

X [ x ) SNy
¢(x) = |+ Acosh (/‘] = }cos k/.z f)+ Bsinh (/.‘ - )sm </V3 j)A
h b \ h

b/

Applying the boundary conditions at x = +« 2. one obtains

N

v

(]

A LR . [R\ . . [ R\ [’
/.y cosh T)Sm =5 )t smh( 5 )cos T

/.1 sin(;.R) + 7 sinh(4; R)

7

L. /R /RN . 7 RN [
/,,smh(T)cos 3 )f/.zcosh( 5 )sm

\

B=2-

2

7, sin(z=R) + 4. sinh(;, R)
where R = /' “a-h. The maximum deflection occurs at x = 0, v = 5 2

gb?

A=, = 384D,,

[l +4].

The stresses at the surfaces of the plate can be obtained readily from (B3). (B11) (B13) and (15)-(16).

oM, oM
e P ]
n’ h*

5. =

\

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(16}

(15a)
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M = —D, 71-*‘247’. (15b)
oA 07
where
CE o (6 bk B x [1 + A cosh ™S cos ™Y 4 Bainh "‘;‘"sin/‘%’f} (B15)
ot 12Dy b A A P
S q

- ]_NU‘*};):,\':
oxt 24D K

/AN

s L X . . X JoX
><’:H/.I)/.S)A+2/.‘/.3B)C05h’f(:05 — +((£7 —/23)B—24, > A) sinh fj»rsm%} (B16)
h h b b

In particular. at the symmetry plane v = b 2

O'\/]: Viz 1 [ ‘.'4( s _,)+,, iB_ R 16 4] i }.,.\‘ ).:.V
- === — 2Al T =2+ 2 /Brys.—16v. AJcosh—cos —
gh? 4 4, \ ' ! 5 S
Lo s coL i LAY L AaX
,E[\ LB —73) =2y Ak /=165 B] 51nh751n7;' (B17)

()’J}Z | 1 [ ';A‘,\ _\)+,) TB_ . lﬁA] h).],\' /‘;:_\
= Vi AAls — 25 RANETVY VRV IR CoOsh - €cOos ——
qbl 4 64 N N h h

L [ N (i -iy—2 "4" /.- — 16B] si h/;'l'\l i L}\. (B18)
Visa ABUAT = 23)=2viay AAL 4 sinth —-sin —.
645 7N N b b



